
How to optimize real-time data ingestion in Snowflake and Iceberg
Practical strategies to optimize your streaming infrastructure
Get familiar with the basics of real-time data streaming, how they play together, and how they differ.
When you order an Uber, prompt a large language model, or make any kind of online payment, there they are: streaming data, stream processing, and real-time analytics. Though they’re connected and often play into the same scenarios, they’re not the same.
Unless you’re an experienced real-time data professional, these three key concepts can be hard to tell apart. If you’re only just dipping your toes into the world of real-time streaming data development, you might want to start with our beginner-friendly introduction to streaming data.
In this post, we’ll cover the similarities and differences between streaming data, stream processing, and real-time analytics. We’ll also discuss when you’ll want to choose what. But before that, let’s start with a brief definition of the three key concepts in real-time data:
Now, let’s take a closer look at each of these real-time concepts. We’ll cover the thinking behind them and their roles in popular use cases. Our goal here is to help you get your concepts straight and set up the best systems for your real-time use case.
They say you can’t step into the same river twice. That’s also very true of data streams since it’s like a constantly flowing river of new data points. Instead of droplets of water, of course, the stream is kept running with the neverending addition of data points – often coming from a myriad of sources.
In today’s world, streaming data is defined by a relentless pace and volume. New drops of data collect in every online game, phone company, and financial institution to form rivers of data. Why is streaming data so important nowadays? In short, timeliness. Since streaming data is processed as it arrives, businesses can make use of it while it’s still fresh.
Streaming data also has its challenges. First and foremost, the immense volume of streaming data can be as overwhelming for both your stack and the team operating it. Data security, reliability, and privacy can also become troublesome with millions of data points across different systems. You need a robust engine to handle the volume, speed, and complexity of streaming data. This is where stream processing comes in.
Stream processing is the net that catches and handles the streaming data. It sorts each data point as quickly as the data flows in, and also extracts valuable information and redirects data to other applications and services.
The main challenges in stream processing include accuracy, scalability, and efficiency. As millions – or even billions – of data points stream every second, stream processing needs to be on point and ready to scale with peaks in streaming data volume.
In most stream processing use cases, the biggest worry is fault tolerance. Any system failure in real-time processing can lead to data loss and disruption of services that are hard to recover from. When implemented correctly, stream processing is an invaluable tool in the world of streaming data. Without it, businesses wouldn’t be able to gain timely insights from their streaming data through real-time analytics. They might still gain insights, but it’ll be too late to act on them.
Real-time analytics is where the magic of real-time data happens. In truth, there’s nothing magic to it, but the process of extracting, interpreting, and visualizing real-time data can add some real power to business decisions.
It’s essentially the process of evaluating data in real time (or as it's being collected) and funneling it to the next logical step so users can make timely decisions. The faster you can gain insights from data, the quicker you can act. Whether the data can help optimize a customer experience, stop gas leaks, detect anomalies in IoT systems, alert you of potential payment fraud, or maintain critical infrastructure before it breaks down, there’s a lot of money to be saved—and earned.
Many businesses have preached about being data-driven for years. With the right implementation of real-time analytics, they can live up to those claims and achieve an impressive level of agility. You can also develop custom interactive tools and dashboards to harness those insights to improve the user experience and boost operational efficiency.
Before implementing anything, though, let’s look at the key differences and interconnections between streaming data, stream processing, and real-time analytics.
Now we’ve looked at streaming data, stream processing, and real-time analytics individually. Let’s bring them together. We’ll imagine them as pieces of a distillery for the sake of clarity.
As you see, the three concepts are as deeply connected as they are different. Streaming data is the input stream processing needed to feed real-time analytics. They rely on each other to function. Without streaming data, there’s nothing to process and analyze. Without stream processing, your data just sits there raw and untapped. And without real-time analytics, you’ll never know what insights you’re missing out on.
So it’s very rarely a question of choosing just one of these concepts. You’ll only gain real-time insights by making all three work together in a way that fits your use case.
If you’re new to real-time development, it might feel a bit overwhelming and intimidating to choose a real-time approach. Here are some pointers to help you make the best choice and adjust along the way.
Remember, there’s no single way to approach all real-time development projects. You need to find the pieces that fit your design, and no amount of preparation can help you quite like getting hands-on with streaming data.
[CTA_MODULE]
To recap, streaming data is a continuous flow of information. Stream processing is like a net that helps you catch, sort, and process the data. And then there’s real-time analytics that evaluates the data and the best course of action for them.
However, all of that streaming data has to be ingested somewhere before you can do anything useful with it. Traditionally, a popular point of entry was Apache Kafka®, but in a time of endless real-time data that needs to be processed and analyzed in a blink, you’ll want to use something more modern (and less complex to manage).
Enter Redpanda—the simple, high throughput, and cost-efficient streaming data platform. It’s fully compatible with Kafka-compatible stream processors, designed for speed and operational simplicity, and reliable at any scale. Think Kafka—but faster, more powerful, and simpler in every way.
Ready to roll up your sleeves and get started? You can grab the Redpanda Community Edition on GitHub or try Redpanda Cloud for free. Then go ahead and dive into the Redpanda Blog for examples and step-by-step tutorials. For questions about Redpanda or all things data streaming, chat with the experts in our Redpanda Community on Slack.
On a roll? Keep learning about real-time streaming data with these great reads:
Subscribe to our VIP (very important panda) mailing list to pounce on the latest blogs, surprise announcements, and community events!
Opt out anytime.